In order to improve the cold resistance of rubber materials, researchers have adopted various methods. These methods mainly include rubber copolymerization and chemical modification, rubber blending, addition of plasticizers, rational selection of vulcanization and filling systems, etc.
1. Rubber copolymerization and chemical modification Rubber copolymerization and chemical modification are effective methods to improve the cold resistance of rubber materials. By introducing monomers with large side groups for copolymerization, the regularity of rubber molecular chains can be disrupted, and their Tg and Tb can be reduced. For example, introducing monomers with flexible structures into fluororubber molecules can increase the flexibility of the molecular chain, reduce intermolecular forces, and thus improve the cold resistance of fluororubber. In addition, chemical modification methods such as epoxidation and isomerization can be used to alter the structure of rubber molecular chains and improve their cold resistance.
2.Rubber blending is a common method to adjust cold resistance in rubber formula design. By combining different types of rubber, their respective advantages can be comprehensively utilized to improve the cold resistance of rubber materials. For example, combining styrene butadiene rubber (SBR) with butadiene rubber (BR) can improve the cold resistance of the rubber. This is because SBR and BR have lower Tg and good molecular chain flexibility, and can still maintain a certain degree of elasticity at low temperatures.
3.Adding plasticizers is one of the effective measures to improve the cold resistance of rubber materials. Plasticizers can increase the flexibility of rubber molecular chains, reduce intermolecular forces, and make molecular segments easier to move. At low temperatures, plasticizers can act as lubricants, reducing friction and resistance between rubber molecular chains, thereby improving the cold resistance of rubber. Common plasticizers include petroleum based hydrocarbon solvent plasticizers and non solvent plasticizers.